

刘典生、庄元勋/文

汽车行业或许已经普及了电气化,但汽车动力电池所提供的功率远远低于飞机飞行的需求。同时,车载动力电池的 尺寸和重量很重要,对飞机而言更甚,因为它们将影响飞机载重量以及续航能力。人们可能会想通过配备更多的电 池来解决电池功率不足的问题,但如果电池过重,飞机则无法从地面起飞。因此,相比于增加电池的数量,提高电 池单位重量的性能才是技术发展的关键。

尽管应用于eVTOL的电池面临实现高比能量、高比功率、提升充电速度和延长生命周期的关键挑战,但改进电池技术对电动飞行器的未来发展至关重要。本篇将介绍当前的电池技术,以及其未来的发展方向。

基础概念

- ·比功率
- ·比能量
- ·充放电速率(C-rate)
- ·充电循环寿命

对eVTOL的影响

- ·载重量
- ·航程
- ·航班运行间隔
- ·寿命

下一代电池技术

- ·固态电池
- ·钠离子电池
- ·氢燃料电池

1. 基础概念

在进一步讨论电池和eVTOL飞行器之间的关联之前,本节将先 介绍电池技术中经常提到的四个基本概念,这四个概念是评估 eVTOL电池性能的主要指标。对飞行器的续航能力、充电时间、 成本等其他性能和特性的讨论都基于这四个主要指标。

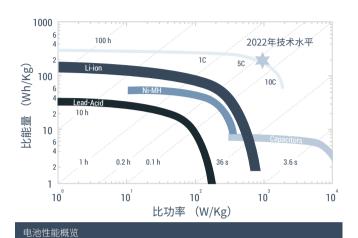
a. 比功率 (SP)

SP描述了单位重量的电池能提供的功率,单位是瓦/千克(W/ kg),比能量取决于电池的化学成分和封装,且决定了飞行器的 载重和所需的电池重量。

b. 比能量 (SE)

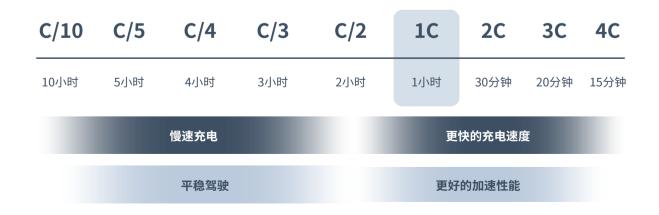
SE描述了单位重量的电池能提供的能量,单位是瓦时/千克 (Wh/kg) ,比能量取决于电池的化学成分和封装,并决定了飞 行器的航程和所需的电池重量。

c. 充放电速率(C-rate)

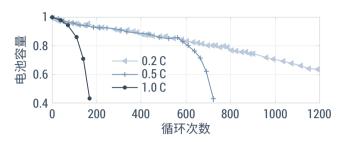

充放电率是用于描述电池充放电速度的参数,通常用C表示。例 如,1C表示电池可以在1小时内被完全充电或放电。充放电速率 的上限取决于电解液和电极的材料,决定了飞行器的驾驶性能, 在需要更大升力或推力的情况下,C值随之更高。例如,在垂直 起飞或着陆期间,要克服的重力比水平巡航时更大,因此需要更 高的C值。飞行器更快的加速需要更大的电池输出功率,所以所 需的C值会更高。下图展示了C值与各项因素之间的联系。

d. 循环寿命

循环寿命是指电池在不能满足飞行器最低动力需求前所经历的充 放电周期数,在充放电循环中放电电量占电池总容量的百分比,


百分比越大放电深度越深。它取决于充放电速率、循环深度、温 度,以及电池的种类,并决定了电池寿命。

比功率、比能量、充放电速率和循环寿命之间的相互关系


来源: Bryan D. McCloskey. Expanding the Ragone Plot: Pushing the Limits of Energy Storage [R]. 美国: American Chemical Society, 2015

SP、SE、充放电速率以及循环寿命之间是相互联系的。对于同 种电池,其SP与SE的变化是相互的(比能量和比功率只能在标 记了不同颜色的带状区域中变化)。电池的化学成分决定了SP 和SE的上下限。电池的SP不能无限大。相应的SE会在SP达到一 定程度后快速减小。因此,需要挑选一个SE和SP之间平衡点以 满足实际需求。5C的放电率(如上图虚线所示)是一个较为合 适的参考标准,在较快的放电速率下尽可能地取得了最大的SP 与SE值。

FVTOI 由池技术介绍

尽管5C的放电速率看似理想,但同时会使得电池寿命较短。 这是因为随着充放电循环次数的增加,电池将会老化,并且其 容量和比能量等性能也会减小。因此,eVTOL电池需要平衡好 SP、SE、充放电速率和循环寿命这四个方面。

电池容量在不同C值下随充放电循环次数变化情况

来源: Peter Keil, Simon F. Schuster, Christian Von Lüders等. Lifetime Analyses of Lithium-Ion EV Batteries [R]. 新加坡: Electromobility Challenging Issues Conference, 2015.

2. 电池对eVTOL的影响

提高比能量和比功率,并同时实现快速充电和长使用寿命是eVTOL电池面临的主要技术挑战。上一节所提到的四大概念对电池及飞行器性能的评估尤为重要,且复杂之处是各个因素之间又会相互制约。本节将结合现有技术水平和实际需求,进一步讨论电池的各项性能指标对eVTOL的具体影响,并介绍提升电池性能的方法。

图源: 空客

a. 比功率限制了飞行器的载重量。

不同的飞行阶段对功率的需求差异在eVTOL飞行器上尤为明显。一趟典型的eVTOL飞行包括5个阶段:垂直起飞、爬升、水平循环、下降和垂直降落。电池在各个飞行阶段的功率输出要求也是不同的,对于大多数eVTOL飞行器,垂直方向上起飞或降落时的功率需求是最大的。另外,比功率的需求会随飞行器的构型的

不同而变化,各类构型在盘旋和巡航时的最小比功率需求是不同的。各机型所需要的最小比功率如下表所示。

类型	最小比功率需求 (W/kg)
多旋翼	400
复合式直升机	450
倾转型	500
复合翼	700
不同类型eVTOL的比功率要求	

注:表中数据由Xiao-Guang Yang, Teng Liu, Shanhai Ge等. Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft [R]. Joule, 2021中摘录。

在5C放电速率下(eVTOL运行时的典型放电率),2022年的电池 技术能达到1kW/kg,预计到2040年有希望达到2.5kW/kg的目标, 但这只有在电芯上采用新型材料或设计才能从根本上实现突破。


b. 比能量限制了飞行器航程。

电池比能量决定了飞行器航程的上限。

优步公司(Uber)在《Fast-Forwarding to a Future of On-Demand Urban Air Transportation》中指出,未来eVTOL飞行器最少应具备大于100英里(约160千米)的有效航程。根据这一预测,电池最少需要约230Wh/kg的比能量。但是,考虑到飞行器动力系统的效率,冗余电量需求,电池包的设计水平等因素,只有50%至60%的比能量水平在飞行中是有效的。因此,整个电池组的比能量应达到380至460Wh/kg才能满足这一最低需求。有研究也指出用于城市出租车和机场穿梭的eVTOL大多数航程在50公里以内,对应的飞行器电池包相应的比能量需求大约在300Wh/kg,所以在目前的电池水平下或只能实现50公里以下的短距离飞行。

电池比能量的提高可以通过下面两种方法:

- 使用更先进的电极材料
- 使用更紧凑的电池组设计

图源: Luminati Aerospace

c. 电池充电速度限制了航班的运行间隔。

先前提到的5C充电速率是在理论上可以实现的目标,但在实际 应用中需要考虑恰当的电池寿命,如此激进的充电速度会导致电 池寿命的急剧减少,从而未被广泛应用。通常,制造商会控制充 电速率低于1C以保证电池寿命。

飞行器着陆时一般只剩余非常少的电能,所以在下一次起飞前需 要重新充电,而充电或换电只能在数分钟的乘客轮换间隔中完 成,但是为了节省时间而购入多个电池用于换电则会造成很高的 成本。目前电池成本占飞行器总制造成本的20%到50%。为了 提高航班运营效率,充电时间需要尽可能短,尤其在高峰期。如 果想要让飞机在降落的12分钟后重新起飞,则需要5C的充电速 率,若想将乘客轮换的时间减半,充电速率也应同时加倍提高。

d. 电池在高充放电速率下的老化问题影响其使用寿命。

电池在1C的充放电速率下的循环寿命约为1,500次。eVTOL电池 需要的高充放电电流和深放电条件下工作,在目前的技术水平下 会导致电池寿命较短。如果以5C的速率运行,寿命周期大约在 1,000次。因此,电池面临的主要挑战是需要确保电池寿命以降低 运行成本。即使飞机每天只进行三次飞行并充电三次,电池也需 要一年一换,这无疑是一笔巨大的开支。但一项非对称温度调控 技术(asymmetric temperature modulation, ATM)通过在 特定的温度和电压下对电池进行充电能够显著减缓电池老化的速 度。有论文报道了这一技术能让电池在6C的充电速度(10分钟完 全充满电池) 下在2,000次循环后仍保持92.3%的电池容量。

3. 下一代电池技术

新型电池技术对eVTOL的未来发展的影响不应被低估。在动力 电池中,锂离子电池并不是唯一的选择,诸如固态电池,钠离子 电池,燃料电池等技术也正在兴起。这些新兴的电池具有的独特

性能,能够满足长航程、大载重、快速充电等不同需求,为未来 eVTOL的大规模应用提供解决方案。

a. 固态电池

固态电池是一种使用固态电极和固态电解质的电池技术,这类电 池的容量和功率理论上显著高于锂离子电池。目前半固态电池已 经成功实现量产,全固态电池预计在2025年实现量产。

b. 钠离子电池

钠离子电池的工作原理和锂离子电池类似。相比于锂离子电池, 现在的钠离子电池成本略高,能量密度略低,但和锂离子电池有 重叠范围,安全性更好。

c. 氢燃料电池

氢燃料电池是一种通过氧化还原反应,将氢气和氧化剂的化学能 转化为电能的新型电池。其最大的特点是具有很高的比能量,并 且只需要直接更换氢气瓶即可继续提供电能,和锂电池相比减少 了充电所需的时间。

4. 结语

电池技术对eVTOL发展有着深远的影响,航程、运载能力、充电 时间、维护成本都与电池技术水平密切关联。eVTOL对动力电池 的性能要求比电动汽车更高,需要电池具备高比能量和比功率, 能在较大的放电速率下持续工作,可以快速充电,并保证良好的 寿命。目前的动力电池技术水平还不能同时完全满足这些要求。 由于对电池性能要求较高,用于载人飞行器的电池在研发和生产 上的难度较大,但与此同时,固态电池、氢燃料电池等下一代先 进电池技术已经开始小规模应用,他们或将为未来eVTOL电池性 能需求提供解决方案。

图源: Manufacturing Technology Centre

深圳市格瑞普电池有限公司成立于1998年,英文是Grepow,意指绿色能源(Green Power)。2008年格瑞普电池进入锂电领域,并先后创立了品牌"格氏""Gens ace"和"TATTU",覆盖无人机、车模、航模等行业。目前格瑞普拥有5家工厂,200余名工程研发技术人员,以及超过2,500个海外实体营业网点。除锂电池生产外,格瑞普也具备电池和充电设备的自主研发能力,能为客户提供个性化电源方案定制服务。

和小型无人机上应用的电池相比,eVTOL在电 池要求上的区别和难点是什么?

同小型无人机相比,eVTOL载重更大,对电池的要求更高,电池电压超过100V,电流最可达100至300A,高电压、大电流电池需要更多的串并联。同时,eVTOL对单体电池的充放电倍率性能、电芯与电芯之间的配对(一致性),成品模组的PACK组装,在均热、散热要求上难度更高。eVTOL电池需要兼顾高倍率、高能量密度、长循环寿命,要求电池具有更高的可靠性。

格瑞普电池与eVTOL整机厂商在电池的研发和适航取证上是如何合作的?

在研发上,对于整机厂商定制化电池的需求,我们会和整机厂家 共同深度挖掘,根据飞机的应用场景,制定符合载人飞机的电池

标准,进行开发验证,从而提升电池的可靠性和安全性。不同公司的产品有各自的运用场景,因此电池的性能需求也有所不同,比如电压,飞行过程中的热控制和热管理。具体来说,比如在电压的需求上,从100V到800V都有;或者对成品电池组的需求有区别,有的会做成单一的大模块,有的则是多个12S至14S较低电压的小模块组合。飞机在不同的飞行阶段和飞行姿态下的电流也是不同的,电芯的放电倍率我们会按实际情况来定制,然后再根据电池的充电效率,充电速度,循环寿命等需求设计和定制适合客户需求的动力电池。

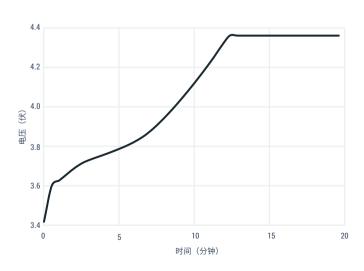
在适航取证上,由于国内目前还没有企业拿到适航认证,所以每家企业都会按照各自的方案开发eVTOL。而像新能源汽车行业现在就有统一的行业标准,但eVTOL还没有。实际上电池是可以单独进行适航认证的。我们已经和国内的eVTOL企业进行合作,希望通过探索整机适航认证让我们的电池达到适航标准,之后再根

据这一标准来申请电池的单独适航认证。取得适航的飞机电池技术标准将被作为行业内认可的标准。

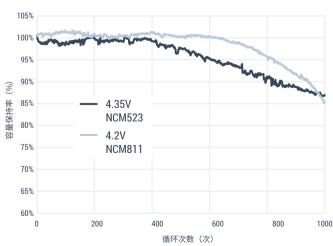
我们已经和国内的eVTOL企业进行合作,希望通过探索整机适航认证让我们的电池达到适航标准,之后再根据这一标准来申请电池的单独适航认证。取得适航的飞机电池技术标准将被作为行业内认可的标准。"

但由于机型不同,飞行性能不同,对电芯类型,配方,放电性能等方面的要求也就不同,所以目前还没有做出一个统一的或者说是通用的标准来做适航认证。我们也在观望,未来是否会像新能源汽车一样出台属于eVTOL电池的最低标准。目前政府和行业之间也在这方面进行沟通。现在行业参考的标准主要来自欧美,但与国内的不同的是,欧美国家是先制定相应的标准再发展产业,而国内在前期会让企业自由发展,等形成规模之后再制定相应的行业标准。

在不同的充放电倍率下,当前格瑞普的电池能 达到什么样的比功率、比能量和循环寿命?在 行业内处于怎样的水平?


在这个eVTOL行业中,5C充放电是一个行业趋势,也是我们的优势之一。目前我们已经实现了1C快充技术下,功率密度可达1,600w/kg(瓦每千克),能量密度可达到280wh/kg(瓦时每千克),循环寿命1,000次以上;5C快充技术下,功率密度可达1,400w/kg,能量密度大于245wh/kg,循环寿命1,000次以上。

在新能源汽车行业,半固态电池(高镍配方811体系三元体)单 片电芯的比能量可达到300至350wh/kg,这种电池的特点是能量 密度高,但受限于材料特性,不能达到高放电倍率。而格瑞普专 注于研发高倍率动力电池,能在240wh/Kg高能量密度下兼顾5C 快充,10C的高放电倍率。


在提高电池的充放电倍率中遇到的技术难点是什么,解决的方向是什么?预计到2025年动力电池的性能会有怎样的提升?

能量密度和充放电倍率一般相互制约的,提升充放电倍率,就会降低能量密度,所以在保证一定能量密度的前提下,要提升充放电速率,这就需要开发更高比容量、高压实和倍率性能更优的材料体系,例如高电压高镍三元正极材料、硅碳负极材料等。而对于2025年动力电池会有怎样的性能提升,我们认为高倍率电池在能量密度会有提高,理想情况下能达到280到300wh/kg,但这取决于上游材料的开发。

5C充电曲线

循环容量保持曲线

聚合物锂电池

在大充放电速率下保持电池寿命是eVTOL动力 电池面临的问题之一,有什么技术和方法可以 延长电池寿命?

电池在高温高电压和充放电过程中,大电流充放电,电芯单体温 度分布的不均衡会降低电池的寿命; 在电池封装方面, 电芯与电 芯之间的一致性(容量差、电压差、及内阻差),也是造成电池 寿命降低的重要因素之一。一般有以下方式可提升电池寿命、一 方面可以通过优化单体电池的设计,如提升倍率性能,优化电池 尺寸,以降低充、放电过程中电池的温升;另外可以通过优化模 组结构设计,改善电池的散热和均热,降低电池温升,保证电池 温度分布的一致性。

电池封装技术和整机厂商结构设计密切相关,我们会根据整机客 户对无人机的结构设计,配合开发相应的电池模组结构,也会采 用CTP、CTC电池封装的一些技术和理念,如近两年我们持续提 升单体电池的容量,导入激光焊接技术,采用轻量化的组装材料 等,以提升整体电池包的能量密度。

您如何看待固态电池的发展以及其在eVTOL上 的应用?

动力电池的发展方向主要是提升能量密度、可靠性、及安全性, 而固态电池在安全方面有一定的优势。如果能研发出更稳定的电 池并实现量产,并高倍率充放电技术上能有所突破,那将会是行 业主要的发展方向。但问题是固态电池在短期内难以量产,这一 情况和先前的石墨烯电池类似。在乐观的情况下,预计能在未来 3-5年内量产。

头际工EVICE 出是一个难点,需要电池能平 实际上eVTOL的控制电流输 稳输出,但这是目前固态电池 还不能达到的。我们认为还需 要有一段时间的过渡、可能会 先在应用于新能源汽车,然后 再到eVTOL,但至少在2025 年之前是难以达成的。"

目前格瑞普主要还是半固态电池的开发,能量密度可以做到275 至300wh/kg, 预计2023年可以实现批量生产。而全固态电池因 其电解质电导率低,倍率性能差等特点,现阶段难以满足高倍率 产品充放电倍率的要求,短期内难以在无人机市场应用,但我们 会持续跟进固态电池的发展动态。

未来电池技术除了固态电池外有没有其他的发 展方向?能否分享一下格瑞普在动力电池方面 的发展计划?

除了固态电池外,氢电池、钠电池也有不错的发展势头。之前 行业内一直追求电池的高能量密度以提升汽车续航。但近年来电 安全性的社会关注度上升,有关电池安全方面的新闻报道较多, 所以电池的发展也会更注重安全性。氢能源是一个很好的发展方 向,日本、韩国都在大力发展氢能源。但国内由于安全性问题, 氢能源厂的建设是很困难的。氢气的储存比较危险,相应的安 全标准国家还没有放开。钠电池的特点是非常稳定,但能量密度 低,所以目前使用在动力电池上的概率不是很大。

格瑞普的产品主要是高倍率电池,我们将持续开发能量密度在 300至350Wh/Kg, 同时满足5C到10C快充、1,000次以上长循环 寿命的高倍率高能量密度动力电池。